
Page 1

CSSE 120 – Introduction to Software Development

Concept: Counted Loops and Range expressions
Loops
A loop is, well, something that loops, that is, executes repeatedly. For example, to print the
numbers 1, 2, 3, 4, … 1000, you could either:

• Stupid approach: Write 1,000 print
statements:

• Sensible approach: Write a single
loop whose body runs 1,000 times:

Do you see why loops are valuable?

range expressions
For the first type of loop that we will examine we need range expressions. There are three
forms of range expressions. Here is the first (we’ll see the other two later in this document).

• range(n) – generates the sequence of integers: 0, 1, 2, ... n-1.

o For example, range(7) generates the sequence: 0 1 2 3 4 5 6.

o The sequence generated by range(n) has n numbers in it. Note that the
sequence starts at 0, not 1, hence stops at n-1. We will see later why this is
handy.

Counted loops
There are many kinds of loops. For now, we will introduce only counted loops – loops that go a
certain number of times, for example a loop that goes 500 times or a loop that goes n times
where n is a variable with an integer value.

A counted loop has the form shown in the box to the right, where k
can be any variable and n can be any variable or constant whose
value is an integer. The for statement makes its body (the
indented part, shown as ... in the box to the right) run n times,
with k set to 0, 1, 2, ... n-1, per the range expression.

Here (on the next page) are some examples:

for k in range(n):

 ...

 ...

for k in range(1000):

 print(k)

print(1)

print(2)

print(3)

 ...

 ...

print(1000)

Page 2

Code snippet What the code snippet prints

for k in range(10):

 print(k, ' ', math.sin(k))

0 0.0
1 0.8414709848078965
2 0.9092974268256817
3 0.1411200080598672
4 -0.7568024953079282
5 -0.9589242746631385
6 -0.27941549819892586
7 0.6569865987187891
8 0.9893582466233818
9 0.4121184852417566

The variable k takes on the values 0, 1, 2,
... 9, per the range statement. You can

(and usually do) also use k in expressions in the
body of the loop, as in the above example.

x = 6

for blah in range(x):

 print(blah, ' ', math.sin(blah))

0 0.0
1 0.8414709848078965
2 0.9092974268256817
3 0.1411200080598672
4 -0.7568024953079282
5 -0.9589242746631385

The variable after the symbol for is called the index variable. It can be any variable (as in the silly
example above), but the common style is to use single-letter variable names like i, j, k, m and n.

for k in range(4):

 print(k)

 print(k * k)

 print(math.sqrt(k))

 print()

0
0
0.0

1
1
1.0

2
4
1.4142135623730951

3
9
1.7320508075688772

The entire body of the for
loop (that is, the indented

lines) are executed repeatedly.
So in this example, the loop

runs 4 times, printing 4 things
each time, producing 16 lines

of output.

print with nothing in the parentheses
simply prints a blank line.

Page 3

range expressions, all three forms

• range(n) – generates the sequence of integers: 0, 1, 2, ... n-1.

o For example, range(7) generates the sequence: 0 1 2 3 4 5 6.

o The sequence generated by range(n) has n numbers in it. Note that the
sequence starts at 0, not 1, hence stops at n-1. We will see later why this is
handy.

• range(m, n) – generates the sequence of integers: m, m+1, m+2, ... n-1.

o For example, range(7, 10) generates the sequence: 7 8 9.

o The sequence generated by range(m, n) has n-m numbers in it. Note that
the sequence ends at n-1, not n, just like in the one-argument form of range.

• range(m, n, i) – generates the sequence of integers:

m, m + i, m + 2*i, m + 3*i, m + 4*i, ... up to but NOT including n.

That is, the sequence starts at m and goes up in “steps” of i from m, stopping when it
would be equal to or more than n.

o For example, range(7, 30, 6) generates the sequence:

7 13 19 26

and range(4, 10, 2) generates the sequence: 4 6 8.

Note that range(4, 10, 2) does NOT include the 10.

Exception: If the third argument i is negative, the sequence starts at m and goes DOWN
to n, in increments of i, stopping when it would be equal to or less than n.

o For example, range(7, -30, -6) generates the sequence:

7 1 -5 -11 -17 -23 -29

and range(10, 4, -2) generates the sequence: 10 8 6.

Do you see why the range expression range(10, 4, 2) generates the empty
sequence (that is, the sequence with no items in it)?

The arguments to range must all be integers (whole numbers). You cannot “step” by
a fractional amount.

More counted loop examples

On the next page …

Page 4

Code snippet What the code snippet prints

for k in range(3, 7):

 print(k, ' ',
math.sin(k))

3 0.1411200080598672
4 -0.7568024953079282
5 -0.9589242746631385
6 -0.27941549819892586

for k in range(3, 20, 4):

 print(k, ' ', math.sin(k))

3 0.1411200080598672
7 0.6569865987187891
11 -0.9999902065507035
15 0.6502878401571168
19 0.149877209662952345

for k in range(20, -10, -5):

 print(k, ' ', math.sin(k))

20 0.9129452507276277
15 0.6502878401571168
10 -0.5440211108893698
5 -0.9589242746631385
0 0.0
-5 0.9589242746631385

for k in range(100, -1, -10):

 print(k)

100
90
80
70
60
50
40
30
20
10
0

for k in range(11):

 print(100 - (k * 10))

 for k in range(0, 101, 10):

 print(100 - k)
Three ways to accomplish the same output!
We will study these techniques in detail over

the next few sessions.

